Taylor Tables of Differencing Schemes

. Notation: Consider u(z,t) for fixed ¢ and z = jAz so that, u(z + kAz) = u(jAz + kAz) = ujyg.

. The generalized form of the Taylor Series Expansions is given by
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. For example, consider the Taylor series expansion for ;4 :
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. Or for uj_s:
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Taylor Table For the 1°* Order Backward Difference
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2. Each term is expanded in it’s Taylor Series and placed in a table to simplify the algebra.

3. Note the multiplication by Az to again simplify the table.
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4. The truncation error term er; = %Am (%) _is defined from the first non-zero column.
J

5. Don’t forget the division by the Az to undo the previous multiplication.

6. Order of accuracy is defined as the exponent on the Az term in er;.




Taylor Table For the 2" Order Central Difference

1. Given
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2. The Taylor Table
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3. The truncation error term er; = —%AmQ (%) _is defined from the first non-zero column.
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4. Accuracy is 2"¢ Order.




Taylor Table For A General 3 Point Difference Scheme

1. Starting with
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2. The Taylor Table
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3. Now instead of having colums sum to zero, we set enough colums to zero to satisfy the number of unknowns.




Taylor Table For A General 3 Point Difference Scheme

. This time the first three columns sum to zero if
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. Note we put the linear equations into a matrix form, let Matlab do the work for you.
. Which gives [¢,b,a] = [1, -4, 3].

. In this case the fourth column provides the leading truncation
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. Thus we have derived a second-order backward-difference approximation of a first derivative:
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Taylor Table For Other Derivatives, e.g. 2"¢

1. Consider a gerneral 3 point formula for the 2"¢ derivative
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2. The Taylor Table is
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3. Setting the first 3 colums to 0 leads to
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4. The solution is given by [a, b, c] = [1,—2,1].




Taylor Table For 2"¢ Derivative

. In this case er; occurs at the fifth column in the table (for this example all even columns will vanish by

T Az2| 24 T 24 oxt) . 12 \oat),

. Note that Az? has been divided through to make the error term consistent.

symmetry) and one finds

. We have just derived the familiar 3-point central-differencing point operator for a second derivative
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